In a non-hazardous waste landfill an integrated odour monitoring system comprised with 2 IOMS, 2 H2S continuous analyser and two automatic air samplers has been operating since 2018: automatic air samplers are activated when two consecutive measurements of 20 ppb at 5 min intervals are measured by H2S continuous analyser or when overall odour emission measured by IOMS exceeded 500 ouE/m3 for more than 5 min.

   Problems with odour emissions were noticed in May-August 2019 with almost a daily automatic samplers’ activation, often correlated with complaints of population; moreover, monitoring campaigns of biogas from the landfill surface showed significant increase of surface emissions for certain zones, implying that surface and fugitive emissions form landfill biogas (LFG) collecting system could have been responsible for such odour emissions. The LFG wellfield system of is comprised of a network of 301 vertical wells in the landfill, coupled with conveyance piping for the transport of LFG to energy recovery and 3 blowerflare facilities.

isoen2022 conference   The International Symposium on Olfaction and Electronic Nose (ISOEN) took place as planned in Aveiro, Portugal at the end of May 2022. Despite its title, ISOEN conferences have sessions not only with electronic noses but with a much broader set of devices that have in common the aim to detect things electronically such as electronic tongues, sensors for non-odorants, air quality, health, etc.

   The conference was structured in several sessions to try to fit the over 100 papers received in this occasion. This was the first conference hold face-to-face in a long time after an online break during the pandemia.

 PCA score plot relevant to IOMS training for the landfill monitoring  Instrumental Odour Monitoring Systems (IOMS) represent the only tool available for environmental monitoring capable to perform real-time characterization of ambient air. They have been commonly used to assess odour impact at receptors thanks to their capability to detect odours and identify their provenance. An emerging application of IOMS concerns the real-time monitoring of emissions at plant fencelines. To do this, IOMS must provide a fast and accurate measurement of the odour concentration.

   The most common approach, currently applied for odour quantification models, involves simplified regression algorithms, neglecting the classification of detected odours before quantification. This results in poorly accurate estimations of the odour concentration since IOMS responses to samples having the same odour concentration, but representative of different sources, may differ significantly.

All the content here under Creative Commons license